Mutually Exclusive and Inclusive Events

CCM2 Unit 1: Probability

Mutually Exclusive Events

- Suppose you are rolling a six-sided die. What is the probability that you roll an odd number or you roll a 2?
- Can these both occur at the same time? Why or why not?
- Mutually Exclusive Events (or Disjoint Events): Two or more events that cannot occur at the same time.

Probability of the Union of Two Events: The Addition Rule

Addition Formula:

$$
P(A \text { or } B)=P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If you randomly chose one of the integers $1-10$, what is the probability of choosing either an odd number or an even number?
2. Are these mutually exclusive events? Why or why not?
3. P (odd)?

1/2
4. $P($ even $)$?

$$
1 / 2
$$

5. P(odd and even)?

0

6. Calculator P(odd or even) using the formula

$P($ Odd or Even $)=P($ Odd $)+P($ Even $)-P(O \cap E)$

$$
\begin{gathered}
=1 / 2+1 / 2-0 \\
=2 / 2=1=100 \%
\end{gathered}
$$

7. Does this answer make sense?

YES!! 100\% chance of getting even or odd \#

Two fair dice are rolled. What is the probability of getting a sum less than 7 or a sum equal to 10 ?
8. Are these events mutually exclusive?
9. Complete the following table using the sums of two dice:

Die	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4				
3	4					
4						
5						
6						

Die	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

10. P (getting a sum less than 7 OR sum of 10)
$=\mathrm{P}($ sum $<7)+\mathrm{P}($ sum $=10)-\mathrm{P}($ sum <7 and sum=10)
$=15 / 36+3 / 36-0$
$=18 / 36$
$=1 / 2$
11. The probability of rolling a sum less than 7 or a sum of 10 is $1 / 2$ or 0.5 or 50%.

Mutually Inclusive Events

Suppose you are rolling a six-sided die. What is the probability that you roll an odd number or a number less than 4?
12. Can these both occur at the same time? If so, when?

Mutually Inclusive Events: Two events that can occur at the same time.
13. What is the probability of choosing a card from a deck of cards that is a club or a ten?

$$
\begin{gathered}
P(\text { choosing a club or a ten }) \\
=P(\text { club })+P(\text { ten })-P(10 \text { of clubs }) \\
=13 / 52+4 / 52-1 / 52 \\
=16 / 52 \\
=4 / 13 \text { or } .308 \text { or } 30.8 \%
\end{gathered}
$$

14. What is the probability of choosing a number from 1 to 10 that is less than 5 or odd?

$$
\begin{gathered}
\mathrm{P}(<5 \text { or odd }) \\
=\mathrm{P}(<5)+\mathrm{P}(\text { odd })-\mathrm{P}(<5 \text { and odd }) \\
<5=\{1,2,3,4\} \text { odd }=\{1,3,5,7,9\} \\
=4 / 10+5 / 10-2 / 10 \\
=7 / 10 \text { or } 0.7 \text { or } 70 \%
\end{gathered}
$$

15. A bag contains 26 tiles with a letter on each, one tile for each letter of the alphabet. What is the probability of reaching into the bag and randomly choosing a tile with one of the first 10 letters of the alphabet on it or randomly choosing a tile with a vowel on it?

15. continued

First 10 letters: A, B, C, D, E, F, G, H, I, J, Vowels: A, E, I, O, U

P(one of the first 10 letters or vowel)
$P($ first 10 letters) + P(vowel) - P(first 10 and vowel)

$$
10 / 26+5 / 26-3 / 26
$$

$12 / 26$ or $6 / 13$ or . 462 or 46.2%
4. A bag contains 26 tiles with a letter on each, one tile for each letter of the alphabet. What is the probability of reaching into the bag and randomly choosing a tile with one of the last 5 letters of the alphabet on it or randomly choosing a tile with a vowel on it?

P(one of the last 5 letters or vowel)

P (one of the last 5 letters) +P (vowel) -P (last 5 and vowel)

$$
\begin{gathered}
=5 / 26+5 / 26-0 \\
=10 / 26 \text { or } 5 / 13 \text { or } .385 \text { or } 38.5 \%
\end{gathered}
$$

Check Your Understanding (CYU)

Given the situation of drawing a card from a standard deck or cards, calculate the probability of the following:

1. Drawing a red card or a king
2. Drawing a ten or a spade
3. Drawing a four or a queen
4. In a math class of $\mathbf{3 2}$ students, 18 boys and 14 are girls. On a unit test, 5 boys and 7 girls made an A . What is the probability of choosing a girl or an A student?
