3.1 Proportions and Similar Figures

Similar Figures:
-
-

Notation:

Given that $\triangle R S T \sim \triangle U V W$, write congruence statements for the corresponding angles and proportions for the corresponding sides.
1.) Corresponding angles are listed in the same position in each triangle name.
$\angle R \cong \angle U$, \qquad
\qquad
2.) Corresponding sides are pairs of letters in the same position in each triangle name.
$\frac{U V}{R S}=$ \qquad

3.) Suppose the scale factor of the dilation in the sequence of similarity transformations that maps $\triangle R S T$ to $\triangle U V W$ is 4 and suppose $R S=8 \mathrm{~mm}$. Explain how to find the length of $\overline{U V}$.
4.) A student identified $\overline{R S}$ and $\overline{U V}$ as a pair of corresponding sides and $\overline{S T}$ and $\overline{V W}$ as a pair of corresponding sides. The student wrote $\frac{R S}{U V}=\frac{V W}{S T}$. Is this a correct proportion? Why or why not? If the proportion is not correct, explain how to write correctly.
\qquad
\qquad
5.) Suppose $\triangle \mathrm{CAN} \sim \triangle \mathrm{JOY}$. If $\mathrm{m} \angle \mathrm{A}=96^{\circ}, \mathrm{m} \angle \mathrm{N}=46^{\circ}$ and $\mathrm{m} \angle \mathrm{C}=\mathbf{3 8 ^ { \circ }}$, then $\mathrm{m} \angle \mathrm{Y}=\ldots, \mathrm{m} \angle \mathrm{J}=\ldots$ and $\mathrm{m} \angle \mathrm{O}=\ldots$
6) Determine whether the given figures are similar

Similarity Statement:

Scale Factor:

In example 5, the scale factor of $\Delta \mathrm{ABC}$ to $\Delta \mathrm{RST}$ is \qquad .
the scale factor of $\Delta \mathrm{RST}$ to $\Delta \mathrm{ABC}$ is \qquad -

1. Are the following rectangles similar?
2. Are the following triangles similar?

Solving with Similar Figures

Given two figures are similar, corresponding sides must be in proportion. Therefore, - we can write a proportion to find the missing side length of one of the figures.

1. Given quadrilateral $\mathrm{PQRS} \sim \mathrm{TUVW}$, write a proportion to find the length of $\overline{\mathrm{PS}}$.

2. Given $\triangle \mathrm{IJK} \sim \Delta \mathrm{LMN}$, Find the length of $\overline{\mathrm{IJ}}$ and then the length of $\overline{\mathrm{IK}}$.

3. If a 36-inch yardstick casts a 21 -foot shadow, how tall is a building whose shadow is 168 feet? (Draw a picture with two similar polygons.)
4. Sam wants to enlarge a triangle with sides 3,6 and 6 inches. If the shortest side of the new triangle is 13 inches, how long will the other two sides be?
