Exploring Angle Restrictions and Classifying Triangles

I. Evaluate an Expression

a. To evaluate an expression means to substitute a given value in for a variable and simplify
b. Evaluate the following:

$$
\text { iii. } 3 x \text { if } x=6 \quad 18
$$

$$
\text { iv. }-4 x^{2}-7 x+2 \text { if } x=-6 \quad-100
$$

II. Sine, Cosine and Tangent
a. Sine, Cosine and Tangent are trigonometric functions that are related to triangles and angles
ii. We will discuss more about where they come from later! (:)
b. We can evaluate a sine, cosine or tangent just like any other expression
c. We have buttons on our calculator for sine, cosine and tangent
iii. Sine \rightarrow SIN
iv. Cosine $\rightarrow \operatorname{COS}$
v. Tangent \rightarrow TAN
d. When evaluating sine, cosine or tangent, we must remember that the value we substitute into the expression represents an angle
e. Angles are measured in
vi. Degrees
vii. Radians
f. We have to check our mode to make sure the calculator knows what measure we are using!
viii. In this class, we will always use Degrees, but you should know that radians exist!

MODE \rightarrow Make sure Degree is highlighted!
g. For some angles, tangent will be undefined.
h. This means there is an asymptote at this value.

Evaluate the following:

$\cdot \sin \left(52^{\circ}\right)$

- $\cos \left(122^{\circ}\right)$
- $\tan \left(-76^{\circ}\right)$
- $\cos \left(45^{\circ}\right)$
- $\sin \left(30^{\circ}\right)$
-tan $\left(90^{\circ}\right)$
-tan (5 radians)
0.788
-0.530
-4.011
0.707
0.500
undefined
-3.38

Solving Equations

a. To solve an equation means to "undo" all the operations to get the variable by itself
b. To "undo" an operation means to use the inverse operation
i. The inverse operation of addition is subtraction
ii. The inverse operation of multiplication is division
iii. The inverse operation of squaring is taking a square root
c. Solve the following equations using inverse operations:
i. $3 x+5=14 \quad x=3$
ii. $\quad 2 x^{2}+4=76 \quad x=6$ and $x=-6$

Solving Sine, Cosine and Tangent Equations

a. We can solve equations involving sine, cosine and tangent just like any other equation!
b. Inverse operations of sine, cosine and tangent
i. Sine \rightarrow SIN $^{-1}$
ii. Cosine $\rightarrow \operatorname{COS}^{-1}$
iii. Tangent \rightarrow TAN $^{-1}$
d. Solve the following equations and express your answer in degrees:

$$
\begin{array}{ll}
\text { 1. } \sin (x)=0.6 & 36.87^{\circ} \\
\text { 2. } \cos (x)=1.5 & \text { no solution } \\
\text { 3. } \tan (x)=-6.7 & -81.51^{\circ} \\
\text { 4. } \cos (x)=-0.87 & 150.46^{\circ}
\end{array}
$$

$$
\text { 5. } \sin (x)=0.5 \quad 30^{\circ}
$$

Challenge

Solve and express your answer in degrees.
$3 \sin (x)+4=1.57$

Answer:

$$
X=-54.1
$$

Complete page 4 in your packet. We will go over in 5 minutes.

Evaluate each of the following using your calculator (round to the nearest thousandth.

1. $\sin \left(62^{\circ}\right)$
0.883
2. $\cos \left(-13^{\circ}\right)$
0.974
3. $\cos \left(132^{\circ}\right) \quad-0.669$
4. $\tan \left(95^{\circ}\right)$
-11.430
5. $\tan \left(-87^{\circ}\right)$
-19.081
6. $\cos \left(778^{\circ}\right)$
0.530
7. $\cos \left(178^{\circ}\right)$
-0.999
8. $\sin \left(225^{\circ}\right)$
-0.707
9. $\sin \left(-60^{\circ}\right)$
-0.866
10. $\tan \left(90^{\circ}\right)$
undefined
11. $\sin \left(78^{\circ}\right)$
0.978
12. \sin (3.4 radians) $\quad-0.256$

Solve the following equations and express your answer in degrees to the nearest tenth:

1. $\sin (x)=0.8$
53.1°
2. $-1 \cos (x)=-0.72$ 43.9°
3. $\cos (x)=-1.7$ undefined
4. $\tan (x)=-9.5$
-84.0°
5. $\cos (x)=-0.78$
141.3°
6. $\sin (x)=0.366$
21.5°
7. $\sin (x)=-0.768$
-50.17°
8. $3 \sin (x)+4=1.57$ -54.1°
9. $\tan (x)=3.27$
72.9°
10. $2 \sin (x)+5 \sin (x)-6=-2$ 34.8°
I. Classifying Triangles by their angles
a Acute Triangle
i. An acute triangle is a triangle that has all three angles less than 90 degrees
\qquad

b. Obtuse Triangle
i. An obtuse triangle is a triangle that has one angle greater than 180 degrees
\qquad

c. Right Triangle
i. A right triangle is a triangle that has one righttriangle
\qquad

d. Oblique Triangle
i. A oblique triangle is a non-right triangle
ii. These can be acute triangles or obtuse triangles.
e Equiangular Triangle
i. An equiangular triangle is a triangle that has all threeandes $=60$ degrees

Classifying Triangles by their sides
a. Scalene Triangle
i. A scalene triangle is a triangle that 3 momcomeryent sides
b. Isosceles Triangle

i. An isosceles triangle is a triangle that has atleastwo conpruent sides
c. Equilateral Triangle
i. An equilateral triangle is a triangle that has three congruent sides

III. Right Triangles and Special Sides
a. Aright triangle has three special sides
b. These sides are dependentonthe angles: arightangle and areference angle
i. Hypotenuse - diagonal from the rightangle
ii. Opposite Leg - opposite (across from/not touching) the reference angle
iii AdjacentLeg - adjacent(nextto/touching) the reference angle

Label the Triangles

Label the triangles using
H for hypotenuse side,

O for opposite side and

A for adjacent side

Complete the table below

Angle	sin(angle)	cos(angle)	tan(angle)
0			
30			
60			
90			
120			
150			
180			
210			
240			
270			
300			
330			
360			

Exploring Sine, Cosine and Tangent

 Angle Restrictions1. What do you notice about the sine column? Describe the pattern.
2. What do you notice about the cosine column? Describe the pattern.
3. What do you notice about the tangent column? Describe the pattern.
