I. Multiplying Binomials and Trinomials: Hint- Box method or FOIL.

1. $(2 x+1)(x-5)$
2. $(-x-1)(x+2)$
3. $(x+4 y)(2 x-7 y)$
4. $(x+2)^{2}$
5. $\left(x^{2}+3 x-4\right)(-2 x+6)$
6. $(3 x-4)\left(3 x^{2}-x-7\right)$

II. Factoring

1. $3 x^{2}+10 x-25$
2. $14 z^{8}+24 z^{7}-30 z^{3}$
3. $18 p^{3}-63 p^{2}-9 p$
4. $5 x^{2}+75 x+250$
5. $x^{3}-5 x^{2}-25 x+125$
6. $81 b^{2}-16 c^{2}$
III. Solving by factoring or quadratic formula
7. Factor the trinomial $x^{2}-2 x=35$ to find the zeros
8. Find the zeros of the quadratic function $4 x^{2}+8 x+7=4$. Write the quadratic formula used to solve and then write the solutions.
9. Using the quadratic formula, find the solutions to the equation $5 n^{2}+9 n=-4$
10. Find the zeros of the quadratic function $3 x^{2}=-10 x+25$

IV. Discriminant

1. Using the quadratic function $x^{2}+2 x-1=2$, identify the discriminant and the number of solutions the function will have.
2. Determine the value of the discriminant and number of solutions for the quadratic function $3 x^{2}-5 x+32=0$.
3. Looking at the graph to the right, what do you know about the discriminant?

V. Standard form of a Quadratic $\left(y=a x^{2}+b x+c\right)$: Be able to identify axis of symmetry, vertex, minimum or maximum, zeros and y-intercept of a quadratic function in standard form. Then graph the quadratic.

Equation	A.O.S	Vertex	Zeros	Y-Intercept	Graph
$\begin{gathered} \# 1 \\ y=-2 x^{2}+8 x-12 \end{gathered}$					
$\begin{gathered} \# 2 \\ y=x^{2}-4 \end{gathered}$					
$\begin{gathered} \# 3 \\ y=x^{2}+2 x-3 \end{gathered}$					\square

VI. Maximum/Minimum Comparison: Use your knowledge of quadratics to compare minimum and maximum values in application problems.

1. Suppose Brett and Andre each throw a baseball into the air. The height of Brett's baseball is given by

$$
h(t)=-16 t^{2}+79 t+6
$$

where h is in feet and t is in seconds. The height of Andre's baseball is given by the graph below:

Brett claims that his baseball went higher than Andre's, and Andre says that his baseball went higher.
a. Who is right? Why?
b. How long is each baseball airborne?
2. Three teams are participating in an egg launch contest. Their results from the egg launch can be found below.

Team A

Time	Height
2	-5.2
3	9.8
6	45.2
9	66.2
12	72.8
15	65
18	42.8
21	6.2
22	-9.2

Team B
$\mathrm{F}(\mathrm{x})=-1.3 x^{2}+39.6 x-195.1$

Team C

a. Which team's egg was launched the highest? Explain how you know this.
b. Which team's egg was launched the furthest? Explain how you know this.
c. Which team should win the contest and why?

1. Graph $y \geq x^{2}-7 x+10$

2. Graph the quadratic in equality $y<x^{2}-9$.

VIII. Linear and Quadratic Systems

1. Solve the following linear-quadratic system

$$
\begin{aligned}
& y+x=1 \\
& y+2=x^{2}+x
\end{aligned}
$$

2. How many solutions does each system have?
a. $y=x^{2}$
$y=2 x+3$
b. $y=x^{2}+3$
$x-2 y=2$
3. A daredevil jumps off the CN Tower and falls freely for several seconds before releasing his parachute. His height, h, in meters, t seconds after jumping can be modeled by: $h=-4.9 t^{2}+t+$ 360 before he releases his parachute; and $h=-4 t+142$ after he releases his parachute. How long after jumping did the daredevil release his parachute?
4. A punter kicks a football. Its height, h, in meters, t seconds after the kick is given by the equation $h=-4.9 t^{2}+18.24 t+0.8$. The height of an approaching blocker's hands is modeled by the equation $h=-1.43 t+4.26$ using the same time. Can the blocker knock down the punt? If so, at what point will it happen?
