Honors Unit 4: Quadratics Study GuideName:______Spring 2016I. Multiplying Binomials and Trinomials: Hint- Box method or FOIL.3. (x+4y)(2x-7y)1. (2x+1)(x-5)2. (-x-1)(x+2)3. (x+4y)(2x-7y)

4. $(x+2)^2$ 5. $(x^2 + 3x - 4)(-2x+6)$ 6. $(3x-4)(3x^2 - x - 7)$

ni i actoring		
$1.3x^2 + 10x - 25$	2. $14z^8 + 24z^7 - 30z^3$	3. $18p^3 - 63p^2 - 9p$

4. $5x^2 + 75x + 250$	5. $x^3 - 5x^2 - 25x + 125$	$6.81b^2 - 16c^2$
\mathbf{T} , $\mathbf{J}\mathbf{X}^{-}\mathbf{T}$ / $\mathbf{J}\mathbf{X}\mathbf{T}\mathbf{Z}\mathbf{J}\mathbf{U}$	$J_{1\lambda} = J_{\lambda} = 2J_{\lambda} \mp 12J_{\lambda}$	0.010 - 100

III. Solving by factoring or quadratic formula

II Factoring

- 1. Factor the trinomial $x^2 2x = 35$ to find the zeros
- 2. Find the zeros of the quadratic function $4x^2 + 8x + 7 = 4$. Write the quadratic formula used to solve and then write the solutions.
- 3. Using the quadratic formula, find the solutions to the equation $5n^2 + 9n = -4$
- 4. Find the zeros of the quadratic function $3x^2 = -10x + 25$

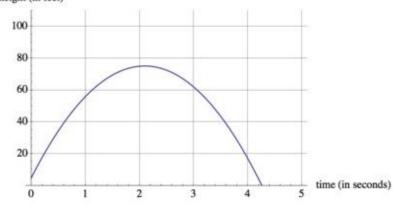
IV. Discriminant

1. Using the quadratic function $x^2 + 2x - 1 = 2$, identify the discriminant and the number of solutions the function will have.

- 2. Determine the value of the discriminant and number of solutions for the quadratic function $3x^2 5x + 32 = 0$.
- 3. Looking at the graph to the right, what do you know about the discriminant?

9
8
7
6
3
2
x
-5 -4 -3 -2 -1 1 2 3 4 5

V. Standard form of a Quadratic (y=ax²+bx+c): Be able to identify axis of symmetry, vertex, minimum or maximum, zeros and y-intercept of a quadratic function in standard form. Then graph the quadratic.


Equation	A.O.S	Vertex	Zeros	Y-Intercept	Graph
$ #1 y = -2x^2 + 8x - 12 $					
#2 y= x ² - 4					
$#3 y=x^2 + 2x - 3$					

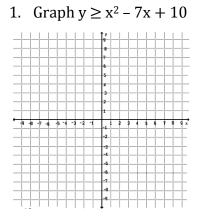
VI. Maximum/Minimum Comparison: Use your knowledge of quadratics to compare minimum and maximum values in application problems.

1. Suppose Brett and Andre each throw a baseball into the air. The height of Brett's baseball is given by

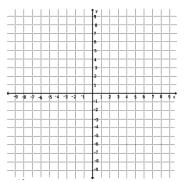
 $h(t) = -16t^2 + 79t + 6$

where *h* is in feet and *t* is in seconds. The height of Andre's baseball is given by the graph below: height (in feet)

Brett claims that his baseball went higher than Andre's, and Andre says that his baseball went higher.


- a. Who is right? Why?
- b. How long is each baseball airborne?

2. Three teams are participating in an egg launch contest. Their results from the egg launch can be found below.


Team	Α	Team B		Team C
Time	Height	$F(x) = -1.3x^2 + 39.6x - 195.1$	100 -	(19, 88)
2	-5.2	1(x) - 1.5x + 55.5x + 155.1	90 -	
3	9.8		80 -	
6	45.2		70 -	∮ \
9	66.2		60 - 50 -	
12	72.8		40 -	
15	65		30 -	
18	42.8		20 -	↓ <u></u>
21	6.2		10 -	(12,0) (26,0)
22	-9.2		-10	

- a. Which team's egg was launched the highest? Explain how you know this.
- b. Which team's egg was launched the furthest? Explain how you know this.
- c. Which team should win the contest and why?

VII. Graphing Quadratic Inequalities

2. Graph the quadratic in equality $y < x^2 - 9$.

VIII. Linear and Quadratic Systems

- 1. Solve the following linear-quadratic system
 - y + x = 1 $y + 2 = x^2 + x$
- 2. How many solutions does each system have?

a. $y = x^2$	b. $y = x^2 + 3$
y = 2x + 3	x - 2y = 2

3. A daredevil jumps off the CN Tower and falls freely for several seconds before releasing his parachute. His height, h, in meters, t seconds after jumping can be modeled by: $h = -4.9t^2 + t + 360$ before he releases his parachute; and h = -4t + 142 after he releases his parachute. How long after jumping did the daredevil release his parachute?

4. A punter kicks a football. Its height, *h*, in meters, *t* seconds after the kick is given by the equation $h = -4.9t^2 + 18.24t + 0.8$. The height of an approaching blocker's hands is modeled by the equation h = -1.43t + 4.26 using the same time. Can the blocker knock down the punt? If so, at what point will it happen?