\qquad
Simplify the following exponents

1. $\left(14 a^{4} b^{6}\right)^{2}\left(a^{6} c^{3}\right)^{7}=$
2. $\left(\frac{4 d^{3}}{c^{5}}\right)^{3}=$
3. $\left(\frac{x^{-8}}{y^{11}}\right)^{-2}$
4. $\left(g^{3} \cdot g^{-2}\right)^{4}$

Simplify each expression, and write your final answer with exponents.
*Hint: Change all radicals to exponents first!
5. $\sqrt[3]{k} \cdot k^{6 / 4}$
6. $\sqrt{36 s^{2}} \cdot\left(s^{6}\right)^{\frac{1}{3}}$
7. $2 k^{2 / 3} \cdot \frac{1}{4} k^{5 / 6}$

Simplify each expression, and write your final answer in simplest radical form.
8. $\mathrm{m}^{1 / 2} \cdot \mathrm{~m}^{4 / 3}$
9. $\sqrt[4]{256 x^{8}} \cdot \sqrt{8 x^{3}}$

Solve the following equations. Remember to rewrite radicals as exponential expressions and check your solutions.
10. $\sqrt[3]{2 x-4}=-2$
11. $\sqrt{x+1}=x+1$
12. $\sqrt{x-7}=-9$
13. $\sqrt{3 x+19}=x-3$

Solve the following word problems

14. The function $y=187900(1.025)^{x}$ represents the value of a home x years after purchase. Find the monthly and quarterly rate of appreciation of the home.
15. In a dish, there are 18 bacteria. Ten hours later, there are 180 bacteria in the dish. $P(t)=18\left(10^{0.1 \mathrm{t}}\right)$ provides an exponential growth model that matches these data points.
a. Find the amount after 4 hours.
b. Use the given function to estimate the time when the bacteria would be 20,000.
16. The buffalo population in the Midwest is decreasing by a rate of 15% each year. The population in 1904 is 200 . Write an explicit equation to model this situation. In what year will the population be 500 ?

Convert from exponential to \log form or log to exponential form
17. $\left(\frac{2}{3}\right)^{x}=\frac{1}{9}$
18. $3^{x}=42$
19. $\log _{2} p=q$
20. $\log _{u} \frac{1}{4}=v$

Solve for the variables in the exponents
21. $\left(2^{x+1}\right)^{5}=2^{x}$
22. $10^{2 x}-3=997$
23. $2\left(3^{2 x-5}\right)=86$
24. $3(10)^{x+4}+3=15$

Fill in the blank to make each statement true
25. $\left(__\right)^{3}=8 x^{3}$
$26.5 x^{3}$.
27. $\left(__\right)^{-2}=\left(9 / 25 x^{2}\right)$

