Honors Unit 8 Test Review
I. Evaluate or solve the following trigonometric functions

1. $\sin (55)$
2. $\tan (37)$
3. $\cos (177)$
4. $\cos (x)=42$
5. $3 \sin (x)=195$
6. $2 \tan (x)-1=56$
II. Identify the midline and amplitude from the following graphs. Then write the equation of the curve.
7.

Amp: \qquad

Midline: \qquad

Eq: \qquad
8.

Amp: \qquad

Midline: \qquad

Eq: \qquad
9.

Amp: \qquad

Midline: \qquad

Eq: \qquad
10.

Amp: \qquad

Midline: \qquad

Eq: \qquad

III: Identify the amplitude and midline from the following equations
11. $y=-\sin (x)+2$
12. $y=3 \cos (x)+5$
13. $y=-2 \sin (x)-7$
14. $y=4 \cos (x)$
IV. Graph the following and identify the amplitude and midline of each graph.
15. $y=2 \cos (x)+1$

Amplitude: \qquad Midline: \qquad

Amplitude: \qquad Midline: \qquad

V. Mixed Triangles: Pythagorean Theorem, SOHCAHTOA Sides and Angles, and Law of Sines and Cosines

Area of a Triangle Formula: $A=\frac{1}{2} a b \sin (c)$

AAS and ASA Triangles
Law of Sines $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

SSS and SAS Triangles
Law of Cosines $\quad b^{2}=a^{2}+c^{2}-2 a c \cdot \cos B$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
& c^{2}=a^{2}+b-2 a b \cdot \cos C
\end{aligned}
$$

17. Solve for x

18. Solve for x

19. Solve for x

20. Find the area of the $\triangle P Q R$

21. Solve for x

22. Solve for x

23. Find the length of side $A B$

24. Solve for x

25. Solve for the missing side

26. Find the measure of side a.
27. Find the area of $\triangle A B C$.

28. Solve for x

29. Solve for x

30. Solve for x

31. Find the area of the triangle.

32. From the top of a 120 foot tower, an air traffic controller observes an airplane on the runway at an angle of depression of 19°. How far from the base of the tower is the airplane?
33. Find the angle of elevation of the sun when a 12.5 meter tall telephone pole casts an 18 meter long shadow.
34. A 14 foot ladder is used to scale a 13 foot wall. At what angle of elevation must the ladder be situated in order to reach the top of the wall?
35. Then angle of elevation to the top of a building is 41° when measured at a distance of 115 feet from the base of the building. How tall is the building?
