## I. Evaluate or solve the following trigonometric functions

1. sin(55)

2. tan(37)

 $3.\cos(177)$ 

$$4.\cos(x) = 42$$

$$5.3\sin(x) = 195$$

6. 
$$2\tan(x) - 1 = 56$$

## II. Identify the midline and amplitude from the following graphs. Then write the equation of the curve.





8.





10.



## III: Identify the amplitude and midline from the following equations

11. 
$$y = -\sin(x) + 2$$

12. 
$$y = 3\cos(x) + 5$$

13. 
$$y = -2\sin(x) - 7$$

14. 
$$y = 4\cos(x)$$

# IV. Graph the following and identify the amplitude and midline of each graph.

15. 
$$y = 2\cos(x) + 1$$









### V. Mixed Triangles: Pythagorean Theorem, SOHCAHTOA Sides and Angles, and Law of Sines and Cosines

Area of a Triangle Formula: 
$$A = \frac{1}{2} ab sin(c)$$

### **AAS and ASA Triangles**

Law of Sines 
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

## SSS and SAS Triangles

$$b^2 = a^2 + c^2 - 2\alpha c \cdot \cos B$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$c^2 = a^2 + b - 2ab \cdot \cos C$$

#### 17. Solve for x



#### 18. Solve for x



#### 19. Solve for x



20. Find the area of the  $\Delta$ PQR



#### 21. Solve for x



#### 22. Solve for x



23. Find the length of side AB



25. Solve for x







26. Find the area of  $\triangle$ ABC.



27. Solve for the missing side



28. Solve for x



29. Find the measure of side a.



31. Find the area of the triangle.





18 in 43 in 26 in

| 32. From the top of a 120 foot tower, an air traffic controller observes an airplane on the runway at an angle of depression of 19°. How far from the base of the tower is the airplane? |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33. Find the angle of elevation of the sun when a 12.5 meter tall telephone pole casts an 18 meter long shadow.                                                                          |
| 34. A 14 foot ladder is used to scale a 13 foot wall. At what angle of elevation must the ladder be situated in order to reach the top of the wall?                                      |
| 35. Then angle of elevation to the top of a building is $41^{\circ}$ when measured at a distance of 115 feet from the base of the building. How tall is the building?                    |
|                                                                                                                                                                                          |