Midsegment
Midsegment Theorem

Midsegment
Midsegment Theorem

Midsegment:

A segment that connects the midpoints of two sides of the triangle

Midsegment Theorem:

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side

2 In the diagram below, $\overline{R S}$ is the midpoint of $\triangle D E F$.
a) If $\overline{R S}$ is $4 x+5$ and $\overline{D E}$ is $3 x+25$, what is $\overline{R S}$?
B) If $\overline{D E}=2 x+11$ and $\overline{\mathrm{RS}}=8 \mathrm{x}-2$, what is $\overline{\mathrm{DE}}$?

Midsegment:

A segment that connects the midpoints of two sides of the triangle.

Midsegment Theorem:

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side.

2 In the diagram below, $\overline{\mathrm{RS}}$ is the midpoint of $\triangle \mathrm{DEF}$.
a) If $\overline{R S}$ is $4 x+5$ and $\overline{D E}$ is $3 x+25$, what is $\overline{\mathrm{RS}}$?
B) If $\overline{\mathrm{DE}}=2 x+11$ and $\overline{\mathrm{RS}}=8 \mathrm{x}-2$, what is $\overline{\mathrm{DE}}$?

Midsegment
Midsegment Theorem

Midsegment
Midsegment Theorem

Midsegment:

A segment that connects the midpoints of two sides of the triangle

Use $\triangle A B C$, where X, Y, Z are midpoints of the sides
a) $\overline{X Y} \| \overline{A C}$
b) $\overline{C B} \| Z X$
c) If $\overline{Y Y}=6$, then $\overline{A B}=12$
d) If $\overline{C Y}=7$, then $\overline{Z X}=7$
e) If $\overline{\mathrm{AC}}=18$, then $\overline{X Y}=$
\qquad

Midsegment:

A segment that connects the midpoints of two sides of the triangle

(1) Use $\triangle A B C$, where X, Y, Z are midpoints of the sides.
a) $\overline{X Y} \| \overline{A C}$
b) $\overline{C B} \| \underline{Z X}$
c) If $\overline{Z Y}=6$, then $\overline{A B}=\underline{12}$
d) If $\overline{C Y}=7$, then $\overline{X X}=$
e) If $\overline{A C}=18$, then $\overline{X Y}=$
\qquad

Midsegment Theorem:

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side

2 In the diagram below, $\overline{R S}$ is the midpoint of $\Delta \mathrm{DEF}$.
a) If $\overline{R S}=4 x+5$ and $\overline{D E}=3 x+25$, what is $\overline{R S}$?
$2(4 x+5)=3 x+25$ $x=3$

B) If $\overline{D E}=2 x+12$ and $\overline{R S}=2 x-2$, what is $\overline{D E}$? $2 x+12=2(2 x-2)$
\qquad
$\overline{D E}=2 x+12$

Midsegment Theorem:

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side.

2 In the diagram below, $\overline{\mathrm{RS}}$ is the midpoint of $\triangle \mathrm{DEF}$.
a) If $\overline{R S}=4 x+5$ and $\overline{D E}=3 x+25$, what is $\overline{\mathrm{RS}}$?
$2(4 x+5)=3 x+25$
$x=3$
B) If $\overline{D E}=2 x+12$ and
$\overline{R S}=2 x-2$, what is $\overline{D E} ?$ $2 x+12=2(2 x-2)$

$x=4$

$\overline{\mathrm{DE}}$
$x=4$
$=2 x+12 \quad D$

© Lisa Davenport 2014
Print pages $1 \& 2$ double sided. (3 \& 4 for the answer key) Choose the option to flip along the short edge. Cut the pages in half (along the dotted line) to create two foldables. Have students fold the page in half and cut along the dotted line on the top layer, creating two flaps. I suggest printing a single copy- fold, and cut to ensure it has been photocopied properly. Foldables can sometimes be tricky!

The final product should look like this:

Midsegment
Midsegment Theorem

